

National Nano Fabrication Centre (NNFC)

Tool and Process Capabilities

1. Lithography

- 1.1 Direct Laser Writer/Lithography
 - 1.1.1 Preferred Design file format: GDS2 or CIF
 - 1.1.2 Please note that coloured portion on your design will be transparent on the mask
 - 1.1.3 Mask fabrication up to 5 inch in size (we have 3,4 & 5 inch masks in stock) Eg. For 5 inch mask size(square), active writing area is 4" diameter circle
 - 1.1.4 Direct writing on the Substrates can also be done, of sample size 1cm x 1cm to 4" wafer
 - 1.1.5 Minimum feature of 3um (3um size, 3um space dense patterns can be made on upto 5inch mask).
 - 1.1.6 On 200umx200um area with a gap of upto 1.5 um between large features can be made

1.2 eBeam Lithography

- 1.2.1 Minimum sample size of 1cmx1cm is required for processing
- 1.2.2 Maximum writing area is 6mmx6mm with dense patterns
- 1.2.3 Substrate Material preferred is Silicon or Thin oxide
- 1.2.4 Larger area writing is discouraged due to exorbitantly long durations
- 1.2.5 Minimum feature of 50nm (critical dimension 50nm with a minimum gap of 50nm can be made)

1.3 Photo Lithography/UV Exposure

1.3.1 Wide variety of Positive and Negative Photo resists including SU8 series

- 1.3.2 Minimum feature of 3um
- 1.3.3 With a commercially available quartz mask and deep UV lithography minimum feature of upto 1um can be realized
- 1.3.4 Top side alignment accuracy of 2um and Bottom Side Alignment Accuracy of 3 um can be acheived
- 1.3.5 MJB4 Alignment Topside 1um (full wafer) /bottom side5um (double-side polished 2inch wafer)
- 1.3.6 EVG Alignment Topside 1um (full wafer)/ bottom side3um (full wafer)

1.4 Wafer Bonder

- 1.4.1 Wafer/ Substrate Parameter: Up to 4 inch diameter Substrate and small wafer pieces upto 1cmx1cm can be handled
- 1.4.2 Types of bonding Available:
 - 1.4.2.1 Eutectic bonding (Si-Au-Si)
 - 1.4.2.2 Anodic bonding (Si-Glass)
 - 1.4.2.3 Fusion bonding
 - 1.4.2.4 SU8 bonding is possible
- 1.4.3 Bond temperatures up to 450°C

2. Deposition

2.1 CVD

- 2.1.1 **LPCVD**: Si3N4 (Low stress ~400MPa for 800nm, High stress ~1.2GPa for 200nm),
- 2.1.2 Poly Silicon (Undoped, P, N Type doped), thickness range 40nm to 500nm
- 2.1.3 Amorphous Silicon (Undoped, P, N Type doped), thickness range 40nm to 200nm
- 2.1.4 Germanium and Silicon Germanium (Undoped, P, N Type doped), thickness range 40nm to 200nm
- 2.1.5 Low Temperature SiO2, TEOS (Undoped, P, N Type doped), thickness range 30nm to 500nm(LTO*, TEOS), LTO >100nm, 10% uniformity,

- 2.1.6 Si Nanowire growth (Au as seed layer),
- 2.1.7 LPCVD furnace maximum temperature of upto 850C
- 2.1.8 Furnaces: Dry Oxidation 5 to 100nm
- 2.1.9 Wet Oxidation 300nm to 1000nm
- 2.1.10 Phosphorous doping and Boron Doping in Silicon
- 2.1.11 Maximum temperature of upto 1050C for furnace
- 2.1.12 Annealing (Forming Gas ,O₂ , N₂) and Rapid Thermal Processing Temperature of upto 1050 C, Substrate Size from Small pieces to a single4 " full wafer, Ramp rates from 20 deg C/s to 200 deg C/s, SiO2 thickness 5 to 30nm(RTP2)
- 2.1.13 **PECVD**: SiNx, Amorphous Si, SiO₂, SiO_xN_y, Ge, SiGe,
- 2.1.14 Temperature of upto 350C
- 2.1.15 Post processing required for converting amorphous films to poly films
- 2.1.16 Substrate size of 1cmx1cm to 4" wafers
- 2.1.17 Substrate types: silicon,glass,sapphire (other materials Please contact us)
- 2.1.18 Minimum and maximum deposition thickness 15nm and
- 2.1.19 ALD: Al₂O₃, TiO₂, ZnO Thicknesses <50nm, Substrates 1cmx1cm to 8" wafers
- 2.1.20 Temperature of upto 400C

2.2 PVD

- 2.2.1 Sputtering: Metals* upto 300 nm (Process and Material specific, for details Please contact <u>inup.cense@gmail.com</u>) Gold/Platinum/Palladium/Silver up to 200nm, for >200nm Approval needed from concern manager, Please contact <u>inup.cense@gmail.com</u>)
- 2.2.2 Dilelectrics* of upto 200nm, (>200nm Process and Material specific, Please contact inup.cense@gmail.com)
- 2.2.3 Sputter Metal: Substrates 1cm x 1cm to 4" wafers loading capacity.
 - Uniformity in Stationary: 3-4% across 2" (For 7.5 cm Throw distance)
 - Uniformity in Rotation: 4% across 2" (For 7.5 cm Throw distance)
 - Substrate Heating of up to 600 deg C Chamber Heating up to 100 deg C
- 2.2.4 Sputter Dielectric: Substrates 1cm x 1cm to 4" wafers loading capacity
 - Substrate/Localized heating of up to 600 deg C Chamber/Halogen lamp heating up to 100 deg C

- 2.2.5 Cu, Fe and Zn can be deposited in non-cleanroom environment. Samples with these films are not allowed in cleanroom.
- 2.2.6 E-Beam evaporation: Metals* up to 250nm (Process specific)
 Aluminium coating up to 2 um is feasible
 Dielectrics of up to 200nm (Process Specific)
- 2.2.7 Substrates 1cm x 1cm to 6" wafer loading capacity. Film Coating with 1-2% uniformity across 4" diameter

3. Etch

3.1 Dry Etch

- 3.1.1 Dedicated RIEs for Silicon, dielectric, and III-V semiconductor, and metals
- 3.1.2 Gases available in RIEs O_2 , Ar, N_2 , H_2 , Cl_2 , BCl_3 , CH_4 , HBr, SF_6 , CHF_3 , C_4F_8
- 3.1.3 Material that can be etched are Si, Ge, SiGe, Oxide, Nitride
- 3.1.4 Substrates small pieces(1cmx1cm) to 4" wafer
- 3.1.5 Substrate type- silicon (in case of GaN, sapphire please contact us)
- 3.1.6 Material strictly not allowed are PDMS,Cu,SiC,MgO
- 3.1.7 Dedicated DRIE tool for deep through Silicon etch for MEMS applications
- 3.1.8 High Aspect ratios and TSV can be made
- 3.1.9 Only silicon substrates allowed in DRIE
- 3.1.10 Substrates size: small pieces(1cmx1cm) to 4" wafer
- 3.1.11 Substrate height: <5mm

3.2Wet Etch

- 3.2.1 Wafer cleaning, Silicon, Dielectrics, Metal, CMOS, MEMS processes can be done
- 3.2.2 CPD and HF vapour etch for stiction free/less structures
- 3.2.3 Any restrictions? No polymers (including resist), biosamples Materials that would flakes
- 3.2.4 Fast diffusing (Cu, Zn, Fe, Mn, etc.), toxic metals (Cd, Sb, Se, As, Hg, etc.), their alloys not allowed in clean room due to contamination

4. Inline Characterization

4.1 Ellipsometer: Spectral Range: 245-1000nm Measurable materials SiO2,Si₃N₄, PolySi, PolyGe, LTO,a-Si,Al₂O₃, TiO₂,WO₃,CeO₂,Gd₂O₃, MgO, ITO, HfO₂, ZnO Transparent films up to 10um can be measured.

Opaque films of Thickness <30nm can be measured. Sample size of 1cmx1cm to 12" wafer

- 4.2 Dektak: Step height measurement 20nm to 500um
- 4.3 Curvature profile: Sample size range: 1cmx1cm to 200/300mm diameter
- 4.4 Four Point Probe: Sheet resistance range: from 0.001 Ω /Square to > 800K Ω /Square, samples of 1cm square to 8inch wafer
- 4.5 KMOS: Stress and Curvature can be measured
- 5. (Non Cleanroom) Processes
 - 5.1 Anelva Sputtering: Material* thickness deposition range 5nm to 150nm
 - 5.2 Gases: N2,Ar,O2
 - 5.3 Substrate heating upto 300C
- 6. Thermal Evaporator
 - 6.1 Materials: Al, Cr, Au, Pd, Ti, Ni, Ag, Ca, Bi, Alq3, MoO3, BCP, CuPc, Al, Ag, LiF, V2O5.
 - 6.2 Thickness: 20nm to 150nm
- 7. eBeam Evaporator: 4pockets
 - 7.1 Thickness: 10 to 150nm
 - 7.2 Materials: Cr,Ti,Ag,Au,Al, Al₂O₃, ITO
- 8. RIE Anelva: Ar/O2, CF4, N2
- 9. Bell Jar Thermal Evaporator
 - 9.1 Materials: Al, Cr, Au, Ag, Bi, V2O5, Alq3, MoO3
 - 9.2 Thickness: 10 to 100nm metals, 5 to 50nm for oxides
 - 9.3 Lindberg Furnace: Temperature up to : 1000°C

Gases Used : Ar, N2 and O2,

Quartz tube size : 3"dia, Substrate maximum size allowed: 2"

- 10. Wet Etch: Acids
 - 10.1 Piranha, HF, Copper, Fe and Metals
- 11. Wet Etch: Solvents
 - 11.1 Actetone, IPA, Lift Off, Sonication
- 12. Spin Coater: 60 to 8000rpm
 - 12.1 Holding capacity: 4" wafer
- 13. Lithography MJB3:
 - 13.1 4" Mask Plate
 - 13.2 Substrates upto 3" wafer
 - 13.3 Flood Exposure(single layer only), minimum feature of 5um

14. Sputter Metal Target List

Sputter1 Metals
<u> </u>
Aluminum
Chromium
Gold
Molybdenum
Nickel
Platinum
Silver
Titanium
Tungsten
Niobium
Si Undoped

15. Sputter Dielectric Target List

Sputter2 Oxide/Nitride				
Aluminum Oxide	Aluminum Nitride			
Cerium Oxide				
Hafnium Oxide				
Indium Tin Oxide				
Silicon Dioxide				
Tantalum Pent oxide				
Titanium Dioxide				
Zinc Oxide				
Aluminum doped Zinc oxide				
Zirconium Oxide				

E-Beam materials list

All materials are in the form of pellets (most of them size around 1 mm to 10 mm)

E-Beam Evaporator
Alumina
Aluminum
Chromium
Germanium Metal
Gold
Indium Tin Oxide
Nickel
Palladium
Platinum
Silicon
Silicon Dioxide
Titanium
Titanium Oxide

Non Clean room Sputter List

SI. No.	Materials Name	Purity (%)	Diameter (mm)	Thickness (mm)		
1	Silicon Dioxide (SiO2)	99.999	76.2	6		
2	Tungsten Oxide (WO3)	99.95	76.2	6		
3	Carbon Graphite (C)	99.995	76.2	5		
4	Chromium Oxide (CrO)	99.98	76.2	6		
5	Megnesium Oxide (MgO)	99.99	76.2	6		
6	Indium Tin Oxide (ITO)	99.99	76.2	6		
8	Carbon (C)	99.9	76.2	6		
9	Graphite (C)	99.999	76.2	6		
Sputter Metal Target List						
7	Germanium (Ge)	99.999	76.2	3		
10	Barium Strontium	99.99	76.2	6		

11	Silicon Phosphorous (n-type)	99.999	76.2	5
12	Lead Zirconate Titanate (PZT)	99.99	76.2	5
13	Germanium Boron doped (Ge)	99.999	76.2	3
14	Chromium (Cr)	99.9	76.2	6
15	Aluminium (Al)	99.999	76.2	6
16	Iron (Fe)	99.9	76.2	4
17	Nickel (Ni)	99.98	76.2	4
18	Aluminium 1% Silicon	99.999	76.2	5
19	Nickel Iron (Ni Fe)	81 % Ni 19% Fe 99.99	76.2	2
20	Nickel Iron (Ni Fe)	80 % Ni 20% Fe	50	1.5
21	Copper (Cu)	99.999	76.2	6
22	Palladium (Pd)	99.99	76.2	2
23	Titanium (Ti)	99.995	76.2	3
24	Platinum (Pt)	99.99	50	2.5
25	Gold (Au)	99.99	58	3
26	Silver (Ag)	99.99	76.2	2.5
27	Cobalt (C)	99.99	76.2	5
28	Tungsten (W)	99.95	76.2	6
29	Tantalum (Ta)	99.99	76.2	6

16. Wet Etch Material List

Metals: Al, Au, Cr, Ti, Pt, Ni, Hf etc

Dielectrics: Si₃N₄, SiO₂, Si: KOH, TMAH, Photo Resist Removal and Lift off processes,

ITO, ZnO, Ge etching,

For more materials please contact us

Electroplating : Gold only, please contact us inup.cense@gmail.com